
The Exposure to Dioxins and other chemical compounds in the Japanese People

2012

Environmental Risk Assessment Office Environmental Health Department Ministry of the Environment, Japan

Introduction

The Office of Environmental Risk Assessment of the Environmental Health Department of the Ministry of the Environment, Japan, carried out a project entitled "Survey of the Exposure to Dioxins and other chemical compounds in Humans," to obtain the state of accumulation and the amount of intake of dioxins and other chemical compounds, starting from FY 2011. The OERA compiled the results of the survey conducted in FY 2011, as its first year of the project.

Summary of Survey of the Exposure of Dioxins and other chemical compounds in Humans

Objective of the survey

- To obtain the state of exposure of dioxins and other chemical compounds in the Japanese people.
- Conduct a follow-up survey and obtain chronological change in the levels of chemical compounds in people who had participated in surveys carried out in the past.
- To conduct a monitoring survey on POPs (Persistent Organic Pollutants) in biological samples, as required by each parties to Stockholm Convention on Persisting Organic Pollutants.

Scope and methods of the survey

- Three regions were selected from survey regions of "Survey on the Accumulation of Dioxins and other chemical compounds (FY 2002 to FY 2010) for this survey.
- Within each survey area, residents aged 40 59, who had lived in the area for a long period, were recruited and designated as survey subjects.
- Dioxin and other chemical compounds were measured in blood and urine of survey subjects.
- Survey on lifestyles of the subjects was conducted by questionnaire.
- Food samples were collected over a period of three days from some survey subjects. Levels of chemical compounds in food were measured and the amount of intake was calculated.

Results of dioxins survey

- The average concentration of dioxins in the blood in 86 people was 17 pg-TEQ/g-fat, with a range of 0.83 56 pg-TEQ/g-fat. This result is similar to those reported in other surveys.
- Among 8 people who had participated in past studies (in FY 2002 or FY 2003), dioxin levels in blood of 7 people had decreased.
- The average dioxin intake from food by 15 people was 0.65 pg-TEQ/kg body weight/day with a range of 0.035 2.4 pg-TEQ/kg body weight/day. No survey subjects exceeded the tolerable daily intake (TDI) of 4 pg-TEQ/kg body weight/day.

Results of fluorine compounds survey

- The average concentration of PFOS and PFOA in the blood of 86 people was 5.8 ng/mL and 2.2 ng/mL, respectively. In addition, the range of PFOS and PFOA concentration was 1.6 17 ng/mL and 0.66 9.6 ng/mL, respectively. This result is similar to those reported in other surveys.
- The average PFOS and PFOA intake from food by 15 people was 0.57 ng/kg body weight/day and 0.69 ng/kg body weight/day, respectively. In addition, the range of PFOS and PFOA intake from food was N.D. 1.7 ng/kg body weight/day and N.D. 2.9 ng/kg body weight/day, respectively.

Results of heavy metals survey

- The average concentration of total mercury in blood of 86 people was 11 ng/mL with a range of 2.4 29 ng/mL. This result is similar to those reported in other surveys.
- The average concentration in cadmium in urine of 15 people was 1.2 μ g/g cr with a range of 0.25 3.9 μ g/gcr. In addition, measurement of arsenic speciation in urine was conducted.
- Among 15 people, the average intake of total mercury from food was 0.069 μ g/kg body weight/day with a range of N.D. 0.16 μ g/kg body weight/day. The average intake of methyl mercury from food was 0.064 μ g/kg body weight/day with a range of N.D. 0.14 μ g/kg body weight/day. The average intake of lead from food was 0.24 μ g/kg body weight/day with a range of 0.059 0.39 μ g/kg body weight/day. The average intake of cadmium from food was 0.091 μ g/kg body weight/day with a range of 0.024 0.17 μ g/kg body weight/day. No survey subjects exceeded TDI of methyl mercury and cadmium.

Pesticides, plasticizers, and others

• Pesticide metabolites and other (organophosphorus pesticide metabolites, pyrethroid pesticide metabolites, carbamate pesticide metabolites, and triclosan) in urine of 15 people were measured. In addition, measurements were conducted on plasticizer metabolites and other (phthalate metabolites and bisphenol A).

POPs

• The concentration of POPs and candidates specified by Stockholm Convention in blood of 86 people was measured. In addition, amount of intake from food was calculated for 15 people.

Table of Contents

	Introduction			
1	Overvi	iew of the S	urvey of the Exposure to Dioxins and other chemical compounds in Humans · · ·	1
2	Met	hods o	f Survey ·····	2
	2-1	Targe	t regions and subjects ······	2
	2-2	Meth	ods ·····	3
3	Res	ults and	Discussion ·····	5
	3-1	Dioxi	ns survey·····	5
		3-1-1	Blood study ·····	5
		3-1-2	Food study ·····	6
	3-2	Fluor	ine compounds survey ······	7
		3-2-1	Blood study ·····	7
		3-2-2	Food study ·····	8
	3-3	Heav	y metals survey ······	9
		3-3-1	Blood study ·····	9
		3-3-2	Urine study ·····	9
		3-3-3	Food study ·····	10
	3-4	Pestic	cides, plasticizers, and others	11
			Urine study ······	
	3-5	POPs	survey·····	12
		3-5-1	Blood study ·····	12
		3-5-2	Food study ······	14
< (Comr		Members > ·······	
\ >	upp	iement	ary Information >······	1/

1. Overview of the Survey of the Exposure to Dioxins and other chemical compounds in Humans

The Environmental Risk Assessment Office of the Environmental Health Department of the Ministry of the Environment, Japan, carried out a survey entitled "Survey on the Accumulation of Dioxins and other chemical compounds in Humans" from FY 2002 to FY 2010. In this survey, blood dioxin concentrations were measured in 2,264 people living in general environment in Japan. In addition, dioxin concentration in food was measured for 625 people, and the amount of intake from food was calculated (see Supplementary Information).

The "Survey of the Exposure to Dioxins and other chemical compounds in Humans" was newly-launched in FY 2011. In this survey, the survey regions were selected from that of the surveys carried out in the past. The blood and urine was sampled from the participating residents, and the accumulation of dioxins and other chemical compounds and so forth was studied.

Furthermore, a food study (duplicate portions study) was conducted for some of the survey subjects. The chemical compound level in food was measured, and the amount of intake of chemical compounds ingested into the body from food (intake) was estimated.

In FY 2011, chemical compound concentration in blood of 86 people from 3 survey regions was measured. In addition, the chemical compound intake from food was estimated for 15 people.

Survey of the Exposure to Dioxins and other chemical compounds in Humans

Organization responsible for the survey: Environmental Risk Assessment Office, Environmental Health Department,

Ministry of the Environment, Japan Survey period: From FY 2011

Survey regions: Three regions (two fishery regions and one

agricultural region)

Survey specimen: - Blood study (to ascertain the accumulation of chemical compounds in food)

- Urine study (to ascertain the excretion of rapidly-metabolizing compounds)

- Food study (to ascertain the amount of intake of chemical compounds)

Number of subjects: 86 people (15 people also participated

in Food study)

2. Methods of Survey

2-1 Target regions and subjects

In "Survey on the Accumulation of Dioxins and other chemical compounds in Humans" conducted from FY 2002 to FY 2010, the entire country was divided into five regions, and one prefecture was selected for each region for each fiscal year. In each prefecture, three areas classifiable as urban, agricultural, or fishery area were selected on a city, town or village unit.

In FY 2011 survey, three regions were selected from the survey regions of the past studies.

Study subjects were recruited in survey regions according to the criteria shown below, through local administrative authorities.

Furthermore, study subjects who meet the criteria below and who had participated in the past studies were recruited as well.

Study subject criteria

- Age: 40 59
- Residential period in the survey region: 10 years or more
- Infrequent leaves from the study regions for work or other reasons
- Having no problem in blood sampling owing to anemia or other reasons

2-2 Methods

Blood study (all subjects)

Blood samples from survey subjects were taken by a nurse in the presence of a physician.

As a general rule, fasting blood samples were taken from the subjects.

Analysis item

- Dioxins (7 congeners of PDDDs, 10 congeners of PCDFs, 12 congeners of Co-PCBs)
- Organofluorine Compounds (PFOS, PFOA)
- Heavy metal (total Hg)
- POPs (PCBs, DDTs, clordens etc.)
- General health checkup items (blood count, hepatic function, renal function, glucose metabolism etc.)
- Healthy influence index items (Thyroidal function, allergic function, fatty acids etc.)

Urine study (sampled from all subjects; measurement conducted for some of the subjects)

Urine was sampled in urine receptacle, early in the morning of the same day of blood sampling.

Analysis item

- Pesticides and other (organophosphorus pesticide metabolites, pyrethroid pesticide metabolites, carbamate pesticide metabolites, triclosan)
- Plasticizers and other (phthalate metabolites, bisphenol A)
- Heavy metals (cadmium, lead)
- General health examination items (urine specific gravity, urinary sugar, uric protein, and others)
- ※ General health examination items were examined for all subjects, and other items were analyzed for 15 people participating in the food study.

Food study (some of the subjects)

The food study was conducted as a "duplicate portions study." over the three days of the survey period: duplicates of the subject's meals for the three days were stored in containers and collected later. Upon collection, a nutritionist checked the types and weight of the food commodities.

The three days' portion of collected food was then homogenized, and the dioxins were extracted from the homogenate.

Analysis item

- Dioxins (7 congeners of PDDDs, 10 congeners of PCDFs, 12 congeners of Co-PCBs)
- Organofluorine Compounds (PFOS, PFOA)
- Heavy metal (total Hg, metyl Hg, Cd, Pb)
- POPs (PCBs, DDTs, clordens etc.)

Lifestyle survey (questionnaire)

The lifestyle of survey subjects were investigated through individual interviews by a health nurse or a nutritionist, based on the questionnaire sent to the subjects prior to the interview.

Analysis item

 Personal medical history, residential history, occupational history, smoking habit, dietary history, lifestyle, birth history, and others

3. Results and Discussion

3-1 Dioxins survey

3-1-1 Blood study

Result summary

The blood dioxin concentrations found in this study are shown in Table 1. The average concentration in the 86 survey subjects was 17 pg-TEQ/g-fat. The range of concentrations was $0.83 \sim 56$ pg-TEQ/g-fat.

 $\hfill\square$ Table 1 Statistics of blood dioxin concentration

(unit: pg-TEQ/g-fat)

	(41.1161 pg 124) g 146)
	(n=86)
PCDDs+PCDFs +Co-PCBs	
Average	17
Standard deviation	10
Median	14
Range	0.83 ~ 56

Comparison with past survey results

Table 2 summarizes the results of "Survey on the Accumulation of Dioxins and other chemical compounds (FY 2002 to FY 2010)".

While it is difficult to compare in a simplified manner since the average ages of the target subjects and determination methods for dioxins differ by survey, the blood dioxin concentrations obtained in this survey are considered to fall generally within the range of these past surveys.

☐ table 2 Comparison with past survey results

(unit: pg-TEQ/g-fat)

Survey name	Survey on the Accumulation of Dioxins and other chemical compounds	This survey
Survey year	FY 2002 to FY 2010	FY2011
Subjects	People living in the general environment	People living in the general environment
The number of subject	2,264	86
Age		
Average (years)	44.5	50.1
Range	15 ~ 76	40 ∼ 62
PCDDs+PCDFs +Co-PCBs		
Average	19	17
Standard deviation	14	10
Median	16	14
Range	0.10 ~ 130	0.83 ~ 56

Comparison for the same subjects

Among the subjects of this survey, 8 people had participated in the past surveys (FY 2002 and FY 2003).

The comparison of blood dioxin results of the past studies and this survey for these 8 people are shown in the table. The dioxin concentrations in blood have decreased.

 $\hfill\Box$ Table 3 Comparison of blood dioxin concentration in the same subjects

(unit: pg-TEQ/g-fat)

Survey year	Past survey (n=8)	This study (n=8)
Survey year	FY 2002, 2003	FY 2011
PCDDs+PCDFs +Co-PCBs		
Average	40	24
Standard deviation	33	16
Median	25	21
Range	0.96 ~ 95	3.1 ∼ 56

3-1-2 Food study

Result summary

Table 4 summarizes the dioxin intake from food in the 15 people who participated in the food study. The average intake was 0.65 pg-TEQ/kg/day with a range of 0.035 – 2.4 pg-TEQ/kg/day. Tolerable daily intake (TDI) has been used as a guideline for regulating the dioxin intake. (The TDI is a value indicating the maximum intake of a given chemical substance per kg of body weight per day, below which humans may not show adverse health effects even when the chemical is ingested at this amount over a long period of time). In Japan, the TDI for dioxins is 4 pg-TEQ/kg/day as stipulated by the Law Concerning Special Measures against Dioxins, no subjects exceeded the TDI (4pg-TEQ/kg/day) value in this survey.

☐ Table 4 Dioxin intake from food (unit: pg-TEQ/kg/day)

	, 13 - 3 //
	(n=15)
PCDDs+PCDFs +Co-PCBs	
Average	0.65
Standard deviation	0.71
Median	0.39
Range	0.035 ~ 2.4

Comparison with past survey results

Table 5 summarizes the results of "Survey on the Accumulation of Dioxins and other chemical compounds (FY 2002 to FY 2010)".

The dioxin intake from food obtained in this survey are considered to fall generally within the range of the past surveys.

☐ Table 5 Comparison with past survey results

(unit: pg-TEQ/kg/day)

Survey	Survey on the Accumulation of Dioxins and other chemical compounds	This survey
Survey year	FY 2002 to FY 2010	FY2011
Subjects	People living in the general environment	People living in the general environment
The number of subject	625	15
PCDDs+PCDFs +Co-PCBs		
Average	0.82	0.65
Standard deviation	0.86	0.71
Median	0.56	0.39
Range	0.031 ~ 6.2	0.035 ~ 2.4

3-2 Fluorine compounds survey

3-2-1 Blood study

Result summary

The result of fluorine compound concentrations in blood is shown in the table. The average of 86 survey subjects for PFOS was 5.8 ng/mL and 2.2 ng/mL for PFOA. The concentration range for PFOS was 1.5 – 17 ng/mL and 0.66 – 9.6 ng/mL for PFOA.

☐ Table 6 Statistics of blood fluorine compound concentration

(unit: ng/mL)

	(n=86)
PFOS	
Average	5.8
Standard deviation	3.1
Median	4.8
Range	1.5 ~ 17
PFOA	
Average	2.2
Standard deviation	1.4
Median	1.8
Range	0.66 ~ 9.6

Comparison with past survey results

The comparison with the results of "Survey on the Accumulation of Dioxins and other chemical compounds in Humans" conducted from FY 2008 to FY 2010 for 609 subjects is shown in the table. Although it is difficult to make simple comparisons compare because the average age and number of the subjects differ by survey, the results obtained in this survey generally fall within the range of these past surveys.

☐ Table 7 Comparison with past survey results

(unit: ng/mL)

· · · · · · · · · · · · · · · · · · ·				
Survey	Survey on the Accumulation of Dioxins and other chemical compounds Current survey			
Survey year	FY 2002 to FY 2010	FY2011		
Subjects	People living in the general environment	People living in the general environment		
The number of subject	609	86		
PFOS				
Average	7.8	5.8		
Standard deviation	9.2	3.1		
Median	5.8	4.8		
Range	0.73 ~ 150	1.5 ~ 17		
PFOA				
Average	3.0	2.2		
Standard deviation	2.9	1.4		
Median	2.1	1.8		
Range	0.37 ~ 25	0.66 ~ 9.6		

3-2-2 Food study

The intake of fluorine compounds from food for the 15 subjects is shown in the table. The average was 0.57 ng/kg body weight/day with a range of N.D. – 1.7 ng/kg body weight/day for PFOS. Tolerable daily intake (TDI) is not established for fluorine compounds in Japan.

☐ Table 8 Statistics of fluorine compounds intake from food

(unit: ng/kg/day)

	(n=15)
PFOS	
Average	0.57
Standard deviation	0.51
Median	0.53
Range	N.D. ∼ 1.7
PFOA	
Average	0.69
Standard deviation	0.70
Median	0.62
Range	N.D. ∼ 2.9

3-3 Heavy metals survey

3-3-1 Blood study

Result summary

Total mercury concentration was studied for heavy metal in blood. The results are shown in the table. The average of 86 subjects was 11 ng/mL with a range of 2.4 – 29 ng/mL.

☐ Table 9 Statistics of blood total mercury concentration

(unit: na/mL)

	(driid rig/irit)
	(n=86)
Total mercury	
Average	11
Standard deviation	5.8
Median	9.1
Range	2.4 ~ 29

3-3-2 Urine study

Result summary

Cadmium and arsenic speciation (As (V), As (III), monomethylarsonic acid, dimethylarsinic acid, arsenobetaine) in urine were measured. The results are shown in the table.

☐ Table 10 Statistics of urine heavy metal concentration

(unit: μ g/g cr)

Chemical compounds		Statistics	(n=15)
		Average	1.2
Cadmiu	ım	Standard deviation	0.96
Cadmium		Median	0.97
		Range	0.25 ~ 3.9
		Average	0.62
	As (V)	Standard deviation	0.76
	A3 (V)	Median	0.30
		Range	N.D. ∼ 2.5
		Average	1.7
	Λς (ΙΙΙ)	Standard deviation	1.5
	As (III)	Median	1.5
		Range	N.D. ∼ 6.2
	MMA (monomethylarsonic acid)	Average	2.3
Arsenic		Standard deviation	1.2
Arsenic		Median	2.0
		Range	0.89 ~ 5.1
	DMA (dimenthy description acid)	Average	59
		Standard deviation	44
	DMA (dimethylarsinic acid)	Median	42
		Range	12 ~ 170
	AB (arsenobetaine)	Average	100
		Standard deviation	91
		Median	73
		Range	15 ~ 300

3-3-3 Food study

Result summary

Total mercury methyl mercury, lead, and cadmium in food was measured. The results are shown in the table. The average for total mercury was 0.069 μ g/kg body weight/day with a range of N.D. - 0.16 μ g/kg body weight/day. The average for methyl mercury was 0.064 μ g/kg body weight/day with a range of N.D. - 0.14 μ g/kg body weight/day. The average for lead was 0.24 μ g/kg body weight/day with a range of 0.059 - 0.39 μ g/kg body weight/day. The average for cadmium was 0.091 μ g/kg body weight/day with a range of 0.024 - 0.17 μ g/kg body weight/day.

Among the heavy metals studied in this survey, Tolerable Daily Intake (TDI) is established for methyl mercury (0.29 μ g/kg body weight/day) and cadmium (7 μ g/kg body weight/week) in Japan. In this survey, no subject exceeded the TDI.

☐ Table 11 Statistics of heavy metal intake from food

(unit: μ g/kg/day)

	(unit: μg/kg/day)
	(n=15)
Total mercury	
Average	0.069
Standard deviation	0.044
Median	0.063
Range	N.D. ∼ 0.16
Methyl mercury	
Average	0.064
Standard deviation	0.037
Median	0.063
Range	N.D. ∼ 0.14
Lead	
Average	0.24
Standard deviation	0.10
Median	0.24
Range	0.059 ~ 0.39
Cadmium	
Average	0.091
Standard deviation	0.040
Median	0.094
Range	0.024 ~ 0.17

3-4 Pesticides, plasticizers, and others

3-4-1 Urine study

Pesticides, plasticizers, and others in urine was studied. The results are shown in the table.

☐ Table 12 Statistics of pesticide metabolites, plasticizer metabolites, and others in urine

Classification	Chemical compound		Statistics	(n=15)
		DMP	Median	5.6
		DIVIP	Range	1.8 ~ 14
		DEP	Median	5.8
	Organophosphorous pesticide	DLF	Range	N.D. ∼ 32
	metabolites	DMTP	Median	12
		DIVITI	Range	N.D. ∼ 62
Pesticides		DETP	Median	N.D.
resticides		DEII	Range	N.D. ∼ 2.7
		PBA	Median	0.22
	Pyrethroid pesticide	T DA	Range	N.D. ∼ 3.4
	metabolites	DCCA	Median	N.D.
		DCCA	Range	N.D. ∼ 13
	Carbamate pesticide	Ethylenethiourea	Median	N.D.
	metabolites	Etriyichictinodica	Range	N.D. ∼ 0.23
Other	Triclosan		Median	1.3
Otrici	meiosun		Range	0.27 ~ 79
		MBP	Median	20
		, , , , , , , , , , , , , , , , , , ,	Range	11 ~ 670
		MEHP	Median	4.2
		WILLI	Range	0.98 ~ 8.1
Plasticizers	Phthalate	 MEHHP	Median	15
1 lasticizers	metabolites		Range	5.7 ~ 44
		MEOHP	Median	9.6
		WILOTTI	Range	4.6 ~ 18
		MBzP	Median	0.59
		IVIDZI	Range	0.25 ~ 10
Other	Bisphenol A		Median	0.76
Otrici	DISPICTION A		Range	0.23 ~ 1.4

3-5 POPs survey

3-5-1 Blood study

The result of POPs concentrations in blood is shown in the table.

☐ Table 13-1 Statistics of blood POPs concentration

(unit: pg/g-fat)

MoCBs				(unit: pg/g-fat)
DiCBs Range N.D. ~ 430 DiCBs Median 100 TrCBs Range 210 ~ 3700 TeCBs Range 210 ~ 3700 TeCBs Range 650 ~ 33300 PeCBs Median 87000 Range 1900 ~ 140000 Range 1900 ~ 140000 Range 10000 ~ 520000 Range 2600 ~ 110000 Range 2000 ~ 110000 Range 2000 ~ 110000 Range 10000 ~ 1400000 Range N.D. ~ 5000 Range N.D. ~ 1100 Range 11000 ~ 1000000 Range 11000 ~ 1000000 Range 11000 ~ 20000 Range N.D. ~ 4500 Range N.D. ~ 400 Range N.D. ~ 400 Range 1000 ~ 43000 Range 1000 ~ 43000 Range 1000 ~ 43000 Range 1000 ~ 100000 Range 1000 ~ 100000 Range 1000 ~ 43000 Range 1000 ~ 100000 Range 100	Classification	Chemical compound	Statistics	(n=86)
DiCBs Median 100 N.D. ~ 800		MoCRs		
DILBS Range N.D. ~ 800		MOCDS		†
TrCBs		DiCRs		.
PCBs		DICBS		
TeCBs		TrCBs	Median	920
PCB		11603		210 ~ 3700
PCB		TeCRs		6400
PCB		16603		
PCB		PaCRs		
PCB		1 6603		
HpCBs Median 62000	PCB	HyCBs		87000
PIPLES Range 10000 ~ 520000 OcCBs Median 13000 Range 2600 ~ 110000 NoCBs Median 1300 Range 370 ~ 6600 DeCB Median 630 Range 220 ~ 2500 Total PCB Median 190000 Range 31000 ~ 1400000 Range N.D. ~ 5000 Range N.D. ~ 5000 Range N.D. ~ 5000 Median 730 Range N.D. ~ 5000 Median 730 Range N.D. ~ 5000 Median 120000 Range N.D. ~ 1100 Range N.D. ~ 1100 Range N.D. ~ 4000 Range N.D. ~ 4500 Range N.D. ~ 4500 Range N.D. ~ 4500 Range N.D. ~ 800 Range N.D. ~ 800 Range N.D. ~ 400 Median 10000 Range N.D. ~ 400 Median 10000 Range N.D. ~ 400 Median 10000 Range 1600 ~ 29000 Median 23000 Range 3000 ~ 110000 Range 3000 ~ 40000 Range 3000 ~ 40	I CD	TIACD3		
DCCBs Median 130000 13000 1		HnCRs		62000
DCCBS Range 2600 ~ 110000 NoCBS Median 1300 DeCB Median 630 Total PCB Median 190000 Range 220 ~ 2500 Median 190000 Range 31000 ~ 1400000 Range 31000 ~ 1400000 Median N.D.		Прсвз	Range	10000 ~ 520000
NoCBs		OcCRs	Median	13000
DeCB		OCCBS	Range	2600 ~ 110000
DeCB		NoCPs	Median	1300
DeCB		NOCBS	Range	370 ∼ 6600
Total PCB		DoCP		630
Total PCB		Dece	Range	220 ~ 2500
DDT		Total DCP		190000
DDT		Total PCB	Range	31000 ~ 1400000
DDT		2 m' DDD	Median	N.D.
DDT		טטט- O,p	Range	N.D. ∼ 500
DDT		2 2/ DDD	Median	730
DDT		טטט- р,р	Range	N.D. ∼ 5000
DDT		/ DDF		200
P,p'-DDE	DDT	0,p -DDE	Range	N.D. ∼ 1100
O,p'-DDT	וטט	/ DDF		120000
O,p'-DDT Median Range N.D. ~ 4500 p,p'-DDT Median 6100 Range 1100 ~ 29000 Median 100 Range N.D. ~ 800 Median N.D. ~ 800 Range N.D. ~ 400 Median N.D. Range N.D. ~ 400 Median 10000 Range N.D. ~ 400 Median 10000 Range Range 1600 ~ 43000 Median 3700 Range 600 ~ 29000 Median 23000 Range 3000 ~ 110000 Median 3200 Range N.D. ~ 4000 Median 3200 Range 3000 ~ 110000 Median 3200 Range 1300 ~ 40000 Median All N.D. Range 1300 ~ 40000 Median All N.D. Range N.D. ~ 4000 Median All N.D. Median All N.D. Median All N.D.		p,p -DDE	Range	17000 ~ 1000000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		o n' DDT		600
		ן ס,ף -ססו	Range	N.D. ∼ 4500
Kalige Hot > 29000 Cis-Chlordane Median 100 Range N.D. ~ 800 Median N.D. ~ 400 Range 1600 ~ 43000 Range 600 ~ 29000 Range All N.D. Drins Median All N.D. Dieldrin Median All N.D. Heyachlorobenzen (HCR) Median All N.D. Heyachlorobenzen (HCR)		n n/ DDT		
Chlordane		וטט- p,p	Range	1100 ~ 29000
Range N.D. ~ 800 trans- Chlordane Median N.D. Range N.D. ~ 400 Oxychlordane Median 10000 Range 1600 ~ 43000 Range 600 ~ 29000 trans- Nonachlor Range 3000 ~ 110000 Median 23000 Aldrin Range N.D. ~ 800 Median 3700 Range 3000 ~ 110000 Range 3000 ~ 110000 Median Range 1300 ~ 40000 Median 3200 Endrin Range 1300 ~ 40000 Median All N.D. Heyachlorobenzen (HCR) Median 14000		aia Chilandana		100
Chlordane		cis-Chiordane	Range	N.D. ∼ 800
Chlordane Oxychlordane Median (10000) 1600 ~ 43000 cis- Nonachlor Median (3700) 3700 Range (600 ~ 29000) Median (23000) trans- Nonachlor Range (3000 ~ 110000) Aldrin (Range (MCR)) Median (3200) Drins (HCR) Median (3200) Heyachlorobenzen (HCR) Median (14000)		trans Chlordono		
Chlordane Range 1600 ~ 43000 cis- Nonachlor Median 3700 Range 600 ~ 29000 Median 23000 Range 3000 ~ 110000 Median All N.D. Range Median Dieldrin Median Range 1300 ~ 40000 Endrin Median Hevachlorobenzen (HCR) Median 14000		trans- Chiordane	Range	N.D. ∼ 400
cis- Nonachlor Median (All N.D.) 3700 (All N.D.) brins trans- Nonachlor Median (All N.D.) 23000 (All N.D.) Drins Dieldrin (All N.D.) Median (All N.D.) 3200 (All N.D.) Endrin (All N.D.) Median (All N.D.) All N.D.) Heyachlorobenzen (HCR) Median (All N.D.) 14000	Chlordana	Overchlordana	Median	10000
CIS-INDRACTION Range 600 ~ 29000 trans- Nonachlor Median 23000 Range 3000 ~ 110000 Median All N.D. Range Median 3200 Range 1300 ~ 40000 Endrin Median All N.D. Heyachlorobenzen (HCR) Median 14000	Chlordane	Oxychiordane	Range	1600 ~ 43000
trans- Nonachlor Range Median (23000) 29000 (23000) Range (3000 ~ 110000) Range (3000 ~ 110000) Aldrin (Range (MCR)) Median (3200) Dieldrin (Range (MCR)) Median (3200) Endrin (MCR) Median (MCR) Hevachlorobenzen (MCR) Median (14000)		cic Nonachlor		3700
Drins Aldrin Range Median Range 3000 ~ 110000 Dieldrin Median Range All N.D. Range 1300 ~ 40000 Endrin Median Range All N.D. Heyachlorobenzen (HCR) Median Median 14000		Cis- Noriactiloi	Range	600 ~ 29000
Aldrin		trans Nonachlar	Median	23000
Drins Dieldrin Range All N.D.		trans- Nonachior	Range	3000 ~ 110000
Drins Dieldrin Median 3200		Aldrin		VIIND
Endrin Range 1300 ~ 40000 Endrin Range All N.D. Range Heyachlorobenzen (HCR) Median 14000		Aluliii		
Range 1300 ~ 40000	Dring	Dieldrin	Median	
Endrin Median All N.D. Range Median 14000	מוווט	Dielaliii		1300 ~ 40000
Heyachlorobenzen (HCR) Redian 14000		Endrin		
Heyachlorobenzen (HCR) Median 14000			Range	All N.D.
Range 3400 ~ 39000	Heyachlorohenzen (UC	R)	Median	14000
	TIEXACTIIOTODETIZETT (TIC		Range	3400 ~ 39000

☐ Table 13-2 Statistics of blood POPs concentration

(unit: pg/g-fat, except chlordecone and HCB, ng/g-fat)

(unit: pg/g-fat, except chlordecone and HCB, ng/g-fa						
Classification	Chemical compound	Statistics	(n=86)			
	Heptachlor	Median	All N.D.			
	ricptaciiioi	Range				
Heptachlors	cis- Heptachlorepoxide	Median	1800			
Treptaernors	els rieptaemorepoxiae	Range	600 ~ 6500			
	trans-Heptachlorepoxide	Median	All N.D.			
	trans reptaemerepeanae	Range				
	Parlar-26	Median	790			
		Range	N.D. ∼ 3500			
Toxaphene	Parlar-50	Median	1100			
'		Range	N.D. ∼ 4300			
	Parlar-62	Median	N.D.			
	1	Range	N.D. ∼ 3400			
Mirex		Median	1800			
	1	Range Median	400 ~ 6600 520			
	TeBDEs	 	 			
		Range Median	180 ~ 1100 210			
	PeBDEs	Range	N.D. ∼ 870			
		Median	800			
	HxBDEs	Range	N.D. ∼ 2600			
		Median				
	HpBDEs	Range	All N.D.			
PBDE		Median	300			
	OcBDEs	Range	N.D. ∼ 3400			
		Median	N.D.			
	NoBDEs	Range	N.D. ∼ 2000			
		Median	700			
	DeBDEs	Range	N.D. ∼ 5100			
		Median	2600			
	Total PBDEs	Range	500 ~ 8600			
	•	Median	300			
Pentachlorobenzene		Range	40 ~ 1500			
	11611	Median	120			
	α-HCH	Range	N.D. ∼ 1200			
	0.11611	Median	27000			
11611	β-HCH	Range	2800 ~ 240000			
HCH	11611	Median	N.D.			
	γ-HCH	Range	N.D. ∼ 1000			
	δ-HCH	Median	All N.D.			
	0-ncn	Range	All N.D.			
Chlordecone		Median	N.D.			
Chlordecone		Range	N.D. ∼ 1.0			
Hexabromobiphenyl		Median	N.D.			
Пехаргогновірпенуї		Range	N.D. ∼ 700			
	α - Endosulfan	Median	1300			
Endosulfan	a - Endosulian	Range	N.D. ∼ 3700			
Endosulian	0 Endosulfon	Median	N.D.			
	β - Endosulfan	Range	N.D. ∼ 1200			
	~ LIBCD	Median	N.D.			
	α-HBCD	Range	N.D. ∼ 10			
	0 LIBCD	Median				
	β -HBCD	Range	All N.D.			
LIDCD	LIDCD	Median	N.D.			
HBCD	γ-HBCD	Range	N.D. ∼ 3.4			
	2 LIDCD	Median				
	δ-HBCD	Range	All N.D.			
	- LIDCD	Median	Allain			
	ε-HBCD	Range	All N.D.			
		1				

3-5-2 Food study

The intake of POPs from food is shown in the table.

 \square Table 14-1 Statistics of POPs intake from food

(unit: pg/kg/day)

Cla anaia		C+-+!-+!	(unit: pg/kg/day)
Chemic	al compound	Statistics	(n=15)
	MoCBs	Median	7.4
		Range	3.0 ∼ 89
	DiCBs	Median	200
	DICBS	Range	100 ~ 620
	TrCBs	Median	400
	IICBS	Range	180 ~ 1400
	T-CD-	Median	750
	TeCBs	Range	230 ~ 4100
	D 60	Median	930
	PeCBs	Range	130 ~ 8200
262		Median	980
PCB	HxCBs	Range	100 ~ 14000
		Median	420
	HpCBs	Range	37 ~ 7500
		Median	71
	OcCBs	Range	4.1 ~ 1100
		Median	11
	NoCBs		
		Range	1.1 ~ 91
	DeCB	Median	6.0
		Range	0.74 ~ 50
	Total PCB	Median	5100
		Range	820 ~ 35000
	o,p'-DDD	Median	39
	3,6 222	Range	4.1 ∼ 550
	p,p'-DDD	Median	380
	p,p 222	Range	19 ~ 4900
	o,p'-DDE	Median	27
DDT	0,p	Range	4.8 ~ 210
	p,p'-DDE	Median	1600
	p,p-00L	Range	240 ~ 8200
	a n' DDT	Median	66
	o,p'-DDT	Range	8.5 ~ 1400
	/ DDT	Median	300
	p,p'-DDT	Range	28 ~ 7600
	: 611 1	Median	490
	<i>cis</i> -Chlordane	Range	63 ~ 1400
		Median	170
	trans- Chlordane	Range	41 ~ 800
		Median	95
Chlordane	Oxychlordane	Range	22 ~ 340
		Median	130
	cis- Nonachlor	Range	10 ~ 950
		Median	440
	<i>trans-</i> Nonachlor	Range	59 ~ 2100
		Median	N.D.
	Aldrin		N.D. N.D. ∼ 5.2
		Range Median	N.D. ~ 3.2 510
Drins	Dieldrin		
		Range	71 ~ 1800
	Endrin	Median	69
		Range	N.D. ∼ 200

 \square Table 14-2 Statistics of POPs intake from food

(unit: pg/kg/day)

	(unit: pg/kg/day)		
Chemical	compound	Statistics	(n=86)
Hexachlorobenzene (HCI	3)	Median	630
·	·	Range Median	160 ~ 2100 13
	Heptachlor	Range	4.5 ~ 47
	-	Median	110
Heptachlor	cis- Heptachlorepoxide	Range	63 ~ 430
		Median	
	trans-Heptachlorepoxide	Range	All N.D.
	D- d- 26	Median	52
	Parlar-26	Range	N.D. ∼ 340
Toxaphene	Parlar-50	Median	98
l	Falial-30	Range	1.5 ~ 550
	Parlar-62	Median	73
	1 41141 32	Range	N.D. ∼ 430
Mirex		Median	14
	1	Range	2.2 ~ 190
	TeBDEs	Median	290
		Range Median	160 ~ 1500 150
	PeBDEs	Range	63 ~ 710
		Median	36
	HxBDEs	Range	8.9 ~ 510
	H-DDF-	Median	N.D.
PBDE	HpBDEs	Range	N.D. ∼ 40 25
PDDE	OcBDEs	Median	
	OCBDES	Range	N.D. ∼ 110
	NoBDEs	Median	36
	NODDES	Range	N.D. ∼ 120
	DeBDEs	Median	230
		Range	72 ~ 980
	Total PBDEs	Median	780 530 ~ 3000
		Range Median	63
Pentachlorobenzene		Range	31 ~ 220
	11611	Median	160
	α-HCH	Range	64 ~ 1000
	β-HCH	Median	250
HCH	р-псп	Range	48 ~ 2000
TICH	γ-HCH	Median	47
	y rien	Range	23 ~ 430
	δ-HCH	Median	14
		Range	3.7 ~ 29
Chlordecone		Median	All N.D.
		Range Median	N.D.
Hexabromobiphenyl		Range	N.D. ∼ 6.3
	F 1 1/2	Median	570
For the soulf	α - Endosulfan	Range	390 ~ 1300
Endosulfan	0 Endamillar	Median	280
	β - Endosulfan	Range	130 ~ 810
	α-HBCD	Median	N.D.
	4 11000	Range	N.D. ∼ 9.0
	β-HBCD	Median	All N.D.
		Range	
HBCD	y -HBCD	Median	All N.D.
	<u> </u>	Range	
	δ-HBCD	Median Range	All N.D.
		Median	
	ε-HBCD	Range	All N.D.
		, nange	1

Committee Members for the Survey of the Exposure to Diosxins and other chemical compounds in Human

Arisawa, Kokichi Professor, Social and Environmental Medicine Division, Institute of Health

Biosciences, University of Tokushima Graduate School

Kadokami, Kiwao Professor, University of Kitakyushu Graduate School

Kayama, Fujio Professor, Division of Environmental Medicine, Center for Community Medicine,

Jichi Medical University

Sato, Hiroshi 1) Director, National Institute for Environmental Studies

Shibata, Yasuyuki Senior Principal Researcher, Environmental Measurement Research Center,

National Institute for Environmental Studies

Shima, Masayuki Professor, Department of Public Health, Hyogo College of Medicine

Suzuki, Takaichiro President, Kansai Medical Technical College

Suzuki, Noriyuki Leader, Exposure Assessment Research Section, Research Center for Environmental

Risk, National Institute for Environmental Studies

Tohyama, Chiharu Professor, Health and Environmental Sciences Division, Center for Disease Biology

and Integrative Medicine, Graduate School of Medicine, University of Tokyo

Nagai, Masaki Professor, Department of Public Health, Saitama Medical University

Fukushima, Tetsuhito Professor, Department of Hygiene & Preventive Medicine, Fukushima Medical

University

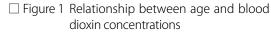
Miyata, Hideaki Visiting Professor, Faculty of Pharmaceutical Sciences, Setsunan University

Yoshinaga, Jun Associate Professor, Graduate School of Frontier Sciences, University of Tokyo

1) Chair

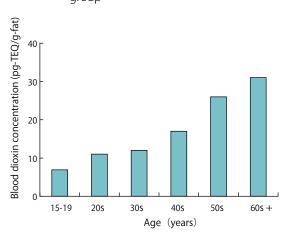
Supplementary Information

Overview of the Survey on Accumulation of Dioxins in Humans (FY2002 ~ FY2010)


- (1) Nationwide survey
- Blood dioxin concentrations
- $\hfill\square$ Table 15 Blood dioxin concentrations by fiscal year

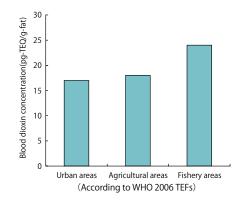
(unit: pg-TEQ/g-fat)

Survey year	FY 2002	FY 2003	FY 2004	FY 2005	FY 2006	FY 2007	FY 2008	FY 2009	FY 2010	Nine-year average
Subjects (N)	259	272	264	288	291	282	257	178	175	Total:2,264
Age (years)										
Average	44.4	41.7	45.2	44.3	43.0	44.2	47.6	46.3	44.4	44.5
Range	16~72	15~69	15~70	15~70	15~72	15~69	17~70	18~76	16~70	15~76
PCDDs+PCDFs Co-PCBs										
Average	22	19	19	22	17	20	21	17	14	19
Standard deviation	14	12	13	15	12	15	15	12	13	14
Median	19	17	16	17	14	16	17	14	11	16
Range	0.96~95	2.7~97	0.64~85	1.5~75	0.82~67	1.6~120	0.43~130	1.1~59	0.10~82	0.10~130


(According to WHO 2006 TEFs)

Relationship to age

☐ Figure 2 Blood dioxin concentrations by age group

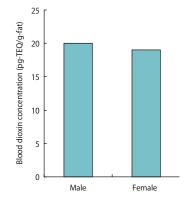


(According to WHO 2006 TEFs)

Differences in blood dixin concentrations by area

 \square Table 16 Blood dioxin concentrations by types of survey area

	Urban areas	Agricultural areas	Fishery areas
Subjects (N)	938	675	651
Average age (years)	43.5	45.4	44.8
Blood dioxin concentration (pg-TEQ/g-fat)			
Average	17	18	24
Standard deviation	11	12	17
Median	15	15	19
Range	0.11~77	0.10~97	0.43~130



(According to WHO 2006 TEFs)

Difference in blood dioxin concentrations by gender

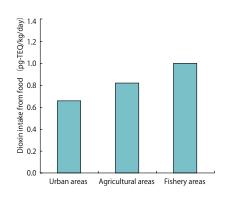
☐ Table 17 Blood dioxin concentrations by gender

	Male	Female
Subjects (N)	1,063	1,201
Average age (years)	43.5	45.3
Blood dioxin concentration (pg-TEQ/g-fat)		
Average	20	19
Standard deviation	15	13
Median	16	16
Range	0.64~130	0.10~95

(According to WHO 2006 TEFs)

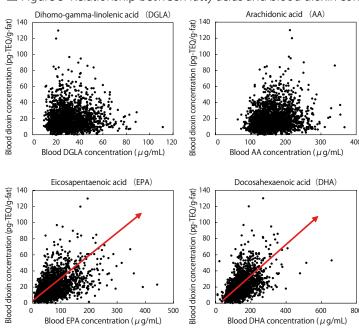
Dioxin intake from food

 \square Table 18 Dioxin intake from food by fiscal year

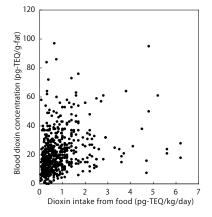

Study year	FY 2002	FY 2003	FY 2004	FY 2005	FY 2006	FY 2007	FY 2008	FY 2009	FY 2010	Nine-year average
Subjects (N)	75	75	75	75	75	75	75	50	50	Total: 625
Dioxin intake from food (pg-TEQ/kg/day)										
Average	1.1	1.1	0.89	0.89	0.57	0.75	0.68	0.79	0.44	0.82
Standard deviation	1.1	0.92	0.66	0.89	0.44	0.90	0.75	1.2	0.42	0.86
Median	0.75	0.91	0.68	0.59	0.41	0.46	0.39	0.43	0.34	0.56
Range	0.058~5.6	0.14~5.6	0.16~3.7	0.13~5.2	0.099~2.2	0.060~6.2	0.054~4.8	0.055~6.2	0.031~2.0	0.031~6.2

19

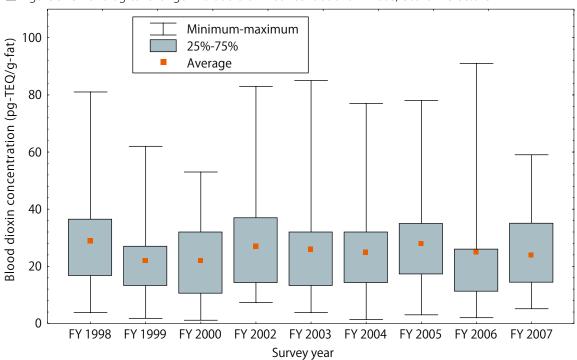
Differences in dioxin intake from food by area


☐ Table 19 Dioxin intake from food by area

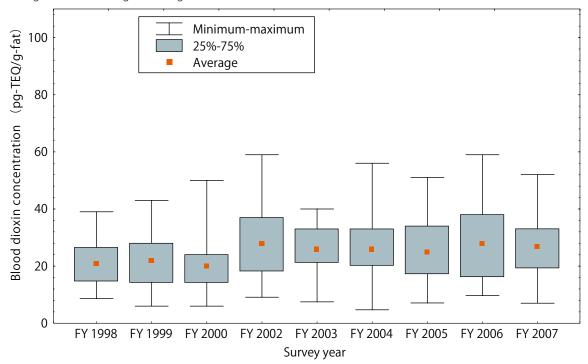
	Urban areas	Agricultural areas	Fishery areas
Subjects (N)	229	201	195
Dioxin intake from food (pg-TEQ/kg/day)			
Average	0.66	0.82	1.0
Standard deviation	0.65	0.86	1.0
Median	0.46	0.53	0.71
Range	0.031~6.2	0.080~5.6	0.054~6.2


(According to WHO 2006 TEFs)

☐ Figure 3 Relationship between fatty acids and blood dioxin concentrations


Relationship to blood dioxin concentrations

☐ Figure 4 Relationship between dioxin intake from food and blood dioxin concentrations



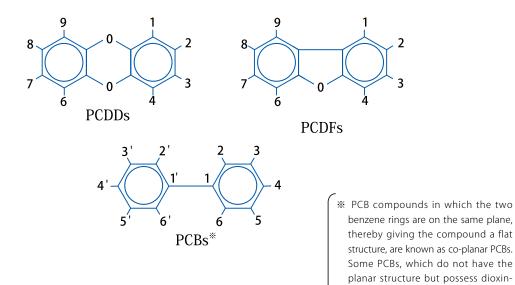
(2) Follow-up survey

☐ Figure 5 Chronological change in blood dioxin concentrations in Nose, Osaka Prefecture

☐ Figure 6 Chronological change in blood dioxin concentrations in Saitama Prefecture

Chemical compounds which measured it in this survey

1. Dioxins


Structure of dioxins

Polychlorodibenzo-*p*-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) are collectively called dioxins. Co-planar polychlorinated biphenyls (co-planar PCBs or dioxin-like PCBs) possess toxicity similar to those of dioxins and are called dioxin-like compounds.

"Dioxins" are defined to include PCDDs, PCDFs and co-planar PCBs in Japan's Law Concerning Special Measures against Dioxins, promulgated on July 16, 1999.

Accordingly, throughout this report, the term "dioxins" will be used to refer to PCDDs, PCDFs, and co-planar PCBs.

The chemical structure of a dioxin molecule is generally composed of two rings of six carbon atoms (benzene rings, shown as in the figure below) bound by oxygen atom(s) (shown as O in the figure below) with chlorine or hydrogen atoms attached (the numbered positions: 1-9 and 2'-6' in the figure below). There are 75 types of PCDDs, 135 types of PCDFs and 12 types of coplanar PCBs, depending on the numbers and locations of the attached chlorine atoms (among these dioxins, 29 types have toxicities similar to 2,3,7,8-TCDD toxicity).

like toxicity, are classified for practical reasons as co-planar PCBs in current documents of the Government of

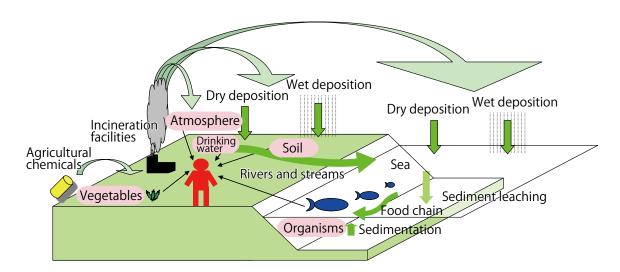
Japan.

Properties of dioxins

Dioxins in general are colorless solids of very low water solubility and low vapor pressure. On the other hand, dioxins characteristically exhibit a high degree of solubility in fats and oils. They are generally stable, not reacting easily with other compounds, acids, and alkalis, but are considered to gradually decompose in the presence of solar ultraviolet light.

Toxicity of dioxins

Carcinogenicity and chronic toxicity have long been used to assess the health risks posed by the toxicities of dioxins. Dioxins have been reported to show carcinogenicity in rats, producing hepatocellular carcinoma, follicular adenoma of the thyroid, lymphoma, and other tumors. As for the carcinogenic mechanism of dioxins, they are considered to act as a promoter—that is, dioxins do not act directly on genes; rather, they promote the carcinogenic activity of other carcinogens. At present, the International Agency for Research on Cancer (IARC) of the World Health Organization (WHO) has classified 2,3,7,8-TCDD as a human carcinogen. In terms of hepatotoxicity, it is recognized to cause elevated liver enzymes and hyperlipidemia. When the WHO reevaluated the risk assessment of dioxins and related compounds in 1998, and whenever risk assessments in and outside Japan have been conducted thereafter, reproductive organ toxicity, central nervous system toxicity and immune system toxicity were identified as adverse effects observed after birth following dioxin exposure during the fetal stage, and these toxicities have been used as endpoints of dioxins. Shortened anogenital distance in males, congenital abnormalities in the vagina, diminished learning ability, diminished resistance to viral infection and other outcomes in laboratory animals are used as endpoints. At present, the effects of dioxins are widely recognized to develop as a result of endocrine disruption through the arylhydrocarbon receptor (AhR) within cells. However, further studies are required, since there is very little understanding of why these diverse toxicities appear.


Generation and behavior of dioxins in the environment

Dioxins are not produced intentionally, except for research purposes, *i.e.*, production of a standard material for dioxin analysis. Dioxins are by-products generated during the processes that occur when heat is applied to substances containing carbon, oxygen, hydrogen and chlorine.

The major source of dioxins at present is waste incineration, particularly the incineration of plastic waste and other products made from fossil fuels. Dioxins are formed in combustion processes and emitted into the air without being fully captured by waste-gas treatment equipment. Other sources exist, such as emissions from electric steel-making furnaces, cigarette smoke, and automobile exhaust. Some reports indicate that dioxins may have accumulated in bottom sediment in aquatic environments owing to the past use of PCBs and some types of agricultural chemicals, which contain dioxins as impurities.

The behavior of dioxins in the environment is not fully known. For example, dioxins in the air may stick to particulate matter, fall to the ground, and pollute soil and water. It is considered that over long period of time, these dioxins, together with those released into the environment via various other pathways, ultimately accumulate in aquatic sediments and enter the food chain when ingested by plankton and fish, thereby accumulating in various organisms in the biota.

While dioxins are mostly anthropogenically made, small amounts are generated in the nature. For instance, dioxins are said to be produced through forest fires and volcanic activity.

2. Fluorine compounds

PFOS (perfluorooctanesulfonic acid) and PFOA (perfluorooctanoic acid) are organofluorine compounds, whose fluoride is bound to carbon. The carbon and fluoride are strongly bound to each other, and the compounds are highly resistant to heat and chemicals.

These compound have been used widely as "surfactants" readily soluble to oil and water in water-repellent sprays, foam fire extinguishers, and coatings of nonstick frying pans until very recently. However, studies have been reported that they are difficult to decompose in environment and within living organisms, and that they have substantial bioaccumulation properties.

PFOS is listed as POPs in Stockholm Convention

In this survey, PFOS and PFOA measurements were conducted for blood and food.

☐ Table 20 Fluorine compounds

Chemical compound	Usage	Measurement case in Japan (average)	Standard; Tolerable intake
	Used in water- repellent sprays and foam fire extinguishers as surfactants.	< Blood > PFOS: 6.3 ng/mL PFOA: 2.1 ng/mL (N-609 Ministry of the Environment, Japan 2008-2010)	
PFOS PFOA		< Food > PFOS: 0.98 ng/kg/day (ND and/or below = 0) 12.1 ng/kg/day (ND and/or below = 1/2 ND) (Maitani et al,. 2007 market-basket system) PFOA: 0.06 ng/kg/day (ND and/or below = 0) 11.5 ng/kg/day (ND and/or below = 1/2 ND) (Maitani et al,. 2007 market-basket system)	※ Tolerable intake is not established.

3. Heavy metals

Heavy metals are widely distributed on Earth and are used for various purposes. However, some heavy metals are potentially toxic within organisms.

In the past, Japan have experienced pollution-related health damage due to heavy metals, such as Minamata Disease caused by methyl mercury and Itai-Itai Disease caused by cadmium.

In this survey, blood total mercury, urine cadmium and arsenic, and total mercury, methyl mercury, lead, and cadmium in food was measured.

Tolerable Daily Intake (TDI) is established for methyl mercury, cadmium, and inorganic arsenic by each national and international organization.

 \square Table 21 Heavy metals studied in this survey

Chemical compound	Usage	Case study in Japan (average)	Standard; Tolerable intake
Total mercury Methyl mercury	Metal mercury is used in fluorescent lights, amalgam, batteries, catalysts, and others. Merhyl mercury is produced by methylation of metal mercury. Methyl mercury is highly toxic.	< Total mercury / blood > 5.4 ng/mL (600 mothers, Shimada et al., 2008) 5.18 ng/mL (115 mothers, Sakamoto et al., 2007) 18.2 ng/mL (56 females, Yamauchi et al., 1994) < Total mercury / food > 0.225 μ g/kg body weight/day (Tokyo, 2005 10 samples by duplicated portion method) 0.238 μ g/kg body weight/day (Tokyo, 2010 market-basket system) < Methyl mercury / food > 0.198 μ g/kg/day (Tokyo, 2005 10 samples by duplicated portion method) 0.152 μ g/kg/day (Tokyo, 2010 market-basket method) 0.152 μ g/kg/day (Tokyo, 2010 market-basket method)	< Methyl mercury > 0.29 μg/kg body weight/day 2.0 μg/kg body weight/week
Cadmium	Used in watch batteries, plating materials, and others. Cadmium is produced with zinc and is recovered in the process of zinc refinery.	< Urine > 3.46 μ g/g cr (1243 females, Kayama et al., 2000 – 2001) 1.26 μ g/g cr (10753 females, Ikeda et al., 2000 – 2001) < Food > 0.320 μ g/kg body weight/day (Tokyo, 2005 10 samples by duplicated portion method) 0.317 μ g/kg body weight/day (Tokyo, 2010 market-basket method)	7 μg/kg/week (Japan)
Arsenic	In the past, arsenic compounds were used in rat poisons. Organic arsenic is found in seafood (seaweeds, shrimps, crabs) but are basically non-toxic. Inorganic arsenic is highly toxic.	< Arsenic speciation / urine > MMA: 2.01 μg/g cr DMA: 40 μg/g cr (248 residents near metropolitan area Chiba et al., 2001) As (III) 4.0 μg/g cr As (V) 0.2 μg/g cr MMA: 3.2 μg/g cr DMA: 38.5 μg/g cr AB: 71.4 μg/g cr (142 males Nakajima et al., 2001)	<tolerable arsenic)="" inorganic="" intake="" of=""> 15 μg/kg body weight/week (JECFA) ** Tolerable intake of organic compounds is not established</tolerable>
Lead	Used widely in electrodes, weight, glass products, solder, and others.	< Food > 0.154 μg/kg body weight/day (Tokyo, 2010 market-basket system) 4.5 μg/kg body weight/week (Ministry of Health, Labour and Welfare, Japan, 2007 market-basket system)	** Tolerable intake is not established.

Note: The result of urine cadmium concentration are geometric mean.

4. Pesticides, plasticizers, and others

For those pesticides having harmful effects and are easily decomposed in bodies of organisms, it is general to measure their metabolites in biological samples. Because these metabolites are excreted through urine, metabolites of organophosphorous pesticides, pyrethroid pesticides, and carbamate pesticides in urine was measured in this survey.

In addition, triclosan, used as disinfectant in medicated soaps and shampoos, was measured.

☐ Table 22 Pesticide metabolites and other studied in this survey

Chemical compound	Usage	Case study in Japan (average)
Organophosphorous pesticide metabolites	Used in pesticides, disinfectant, wood preservatives, and others (metabolites were measured)	<pre>Curine > DMP : 1.5 μg/L (73 subjects, Toyama)</pre>
Pyrethroid pesticide metabolites	Used in pesticides, insecticides, and others (metabolites were measured)	< Urine > PBA: 0.40 μg/g cr (42 males Toshima et al., 2010) PBA: 0.73 μg/g cr (448 subjects Ueyama et al., 2009)
Carbamate pesticide metabolites	Used in pesticides, insecticides, and others (metabolites were measured)	_
Triclosan	Used as disinfectant	_

Phthalate ester and bisphenol A are used in the process of plastic manufacturing. These compounds are suspected to be endocrine disruptors (showing hormonal effects within bodies or obstructing hormone action).

Either compounds excrete from bodies in a short period of time. Therefore, concentration in urine was studied in this survey.

☐ Table 23 plasticizer metabolites and other studied in this survey

Chemical compound	Usage	Case study in Japan (average)				
Phthalate metabolites	Used as plasticizer in plastic, adhesive agents, and others (metabolites were measured)	< Urine > MBP : 52.2 μ g/g cr (48.1 ng/mL) MEHP : 5.84 μ g/g cr (4.44 ng/mL) MEHHP : 10.1 μ g/g cr (8.61 ng/mL) MEOHP : 11.0 μ g/g cr (9.2 ng/mL) MBzP : 4.70 μ g/g cr (3.46 ng/mL) 149 pregnant women Suzuki et al., 2010				
Bisphenol A	Used as monomer or ingredients in plastic manufacturing	< Urine > 24.1 μ g/L (University students 1992) 21.5 μ g/L (University students 1999) (Kawamoto et al., 1999)				

5. POPs and POPs candidates

Pops is the abbreviation of Persistent Organic Pollutants and has following properties:

- O remain intact for exceptionally long period of time;
- O accumulate in bodies of organisms and are highly bioaccumulative;
- O have long range transport and are widely distributed on Earth; and
- O Have toxic effects within bodies of organisms, etc.

The Stockholm Convention on Persistent Organic Pollutants is a global treaty. Initially, twelve POPs have been recognized, and nine new POPs were amended.

These compounds include those produced and used intentionally as pesticides and others. On the other hand, there are compounds like dioxins, which could be produced in the process of combustion or manufacturing of other chemicals.

In the Convention, each party is to prohibit the production, use, and import and export of POPs, and to take every appropriate measure possible in eliminating and reducing the unintentionally produced compounds. Furthermore, each party is encouraged and/or to undertake measures for POPs under Stockholm Convention. Thus, considering this, monitoring surveys of the environment and biological samples are conducted by MOE of Japan.

In this survey, all POPs, listed in Stockholm Convention, in blood and food was measured. In addition, HBCD was measured. HBCD is proposed for listing under the Convention.

☐ Table 24 POPs studied in this survey

Chemical compound	Usage				
Dioxins	Produced unintentionally due to combustion, as well during the manufacture of chlorinated substances				
PCBs	Used as heat exchange fluids, in electric transformers, and as additives in carbonless copy papers and such				
DDT	Used as hygiene pesticides and insecticides				
Chlordane	Used to control termites and as pesticides				
Aldrin	Used as pesticides				
Dieldrin	Used as pesticides, insecticides, and termite control				
Endrin	Used as pesticides				
Hexachlorobenzen (HCB)	Used as material for herbicide manufacturing				
Heptachlor	Used as pesticide and termite control				
Toxaphene	Used as pesticides overseas				
Mirex	Used as pesticides overseas				
PBDE	Used as fire-retardant				
Pentachlorobenzene	Used as chemical intermediate of agricultural fungicides				
НСН	Used as pesticides				
Chlordecone	Used as insecticides overseas				
Hexabromobiphenyl	Used as fire-retardant				
Endosulfan	Used as pesticides and insecticides				

☐ Table 25 POPs candidates studied in this survey

Chemical compound	Usage
HBCD	Used as fire-retardant

6. Dioxin intake

In Japan, the tolerable daily intake (TDI) of dioxins was set at 4 pg-TEQ/kg/day in June 1999, based on the latest available scientific information. Safety of the total amount of dioxins ingested by humans is evaluated by comparing with this value.

On the average, the total daily intake of dioxins by the Japanese people is estimated to be approximately 0.83 pg-TEQ/kg/day.

A similar figure has been reported in Western countries.

Conceivable routes of intake include food and the ambient air and soil, but the intake from food is estimated to account for the largest portion. A survey by the Ministry of Health, Labour and Welfare, Japan (FY 2010 Survey on the Daily Intake of Dioxins from Food) estimated the daily intake at approximately 0.81 pg-TEQ/kg/day. A survey by the Ministry of the Environment (FY 2010 Environmental Survey of Dioxins) estimated the intake from the ambient air at approximately 0.0093 pg-TEQ/kg/day and the intake from soil at approximately 0.0042pg-TEQ/kg/day. These levels are below the TDI and thereby considered to be below the level which can cause adverse effects on human health.

Once dioxins are absorbed into the body, they remain mostly in the adipose tissue. The rate of decomposition and excretion of dioxins is very slow. It is reported to take approximately seven years for dioxin concentrations to be reduced by one half (half life) in humans.

■ Converted to amount per kg of body weight

Tolerable daily

☐ Figure 7 Specification of the average daily intake of dioxins by the Japanese people(FY 2010) Note 1

intake (TDI) 4 pg-TEQ/kg/day Total approx. 0.83 pg-TEQ/kg/day Ambient air Ambient airNote2 0.0093 pg-TEQ/kg/day 0.014 pg-TEQ/kg/day Soil SoilNote3 0.0042 pg-TEQ/kg/day Seafood 0.7626 pg-TEQ/kg/day **Estimated** Meat and eggs 0.0416 pg-TEQ/kg/day intake Milk and dairy products 0.0028 pg-TEQ/kg/day 0.8134 pg-Food^{Note4} TEQ/kg/day Highly pigmented vegetables 0.0006 pg-TEQ/kg/day Grains and potatoes 0.0004 pg-TEQ/kg/day Others 0.0054 pg-TEQ/kg/day

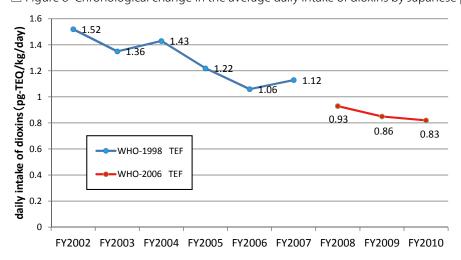
(According to WHO 2006 TEFs)

Table 26 and Figure 8 show Chronological change of estimated total daily intake of dioxins by the Japanese people using the results of "Survey on the Daily Intake of Dioxins from Food (Ministry of Health, Labour and Welfare, Japan)" and "Environmental Survey of Dioxins (the Ministry of the Environment, Japan)".

Enforcement of the "Act on Special Measures against Dioxins (Jan,2000)" has decreased emission of dioxins to environment greatly.

Dioxin concentration of food and environment (ambient air and soil) have also decreased.

As a result, trend of total daily intake of dioxins by the Japanese people has decreased.


Further decreases in intake are expected as a result of measures to reduce dioxins emissions.

☐ Table 26 Chronological change in of the average daily intake of dioxins by Japanese people Note 1, Note 5 pq-TEQ/kg/day

		FY 2002	FY 2003	FY 2004	FY 2005	FY 2006	FY 2007	FY 2008	FY 2009	FY 2010
А	mbient air ^{Note 2}	0.028	0.020	0.017	0.015	0.015	0.012	0.011	0.0093	0.0093
S	oil Note 3	0.0068	0.0052	0.0044	0.0040	0.0038	0.0054	0.0056	0.0042	0.0042
	Seafood	1.290	1.147	1.245	1.090	0.9400	1.033	0.8634	0.7840	0.7626
	Meat and eggs	0.150	0.141	0.101	0.0686	0.0704	0.0422	0.0396	0.0398	0.0416
	Milk and dairy products	0.0346	0.0322	0.0468	0.0328	0.0212	0.0226	0.0076	0.013	0.0028
Food	Highly pigmented vegetables	0.0030	0.002	0.0028	0.0028	0.001	0.0006	0.0008	0.0004	0.0006
	Grains and potatoes	0.001	0.001	0.0026	0.0022	0.0054	0.001	0.0008	0.001	0.0004
	Others	0.010	0.0070	0.010	0.0064	0.0064	0.0058	0.0030	0.0042	0.0054
T	otal approx.	1.52	1.36	1.43	1.22	1.06	1.12	0.93	0.86	0.83

(According to WHO 1998 TEFs from FY2002 to FY2007, WHO 2006 TEFs from FY2008 to FY2010)

☐ Figure 8 Chronological change in the average daily intake of dioxins by Japanese people Note 1, Note 5

Note1 : Created by MOE based on "Environmental Survey of Dioxins [MOE]" and "Survey on the Daily Intake of Dioxins from Food [MHLW] — Health and Labour Sciences Research"

Note2: Values used for statistical analysis were derived as follows: average the general environmental monitoring data and the roadside monitoring data, respectively, multiply each average value by the number of monitoring points, add the multiplied values, and divide this value by the total number of monitoring points.

Note3: Values are average of the general environmental monitoring data.

Note4: The significant figures are based on the daily intake values of dioxins from each food groups and total food.

Note5: As handling of significant figures, etc. had changed after FY 2009, there were cases in which values including the last digit differed from results of previous fiscal year.

Please address opinions and inquiries to:

Environmental Risk Assessment Office Environmental Health Department Ministry of the Environment, Japan

1-2-2 Kasumigaseki, Chiyoda-ku, Tokyo 100-8975 JAPAN Tel (main): +81-3-3581-3351 (extension 6343) Tel (direct): +81-3-5521-8262

Fax: +81-3-3581-3578 http://www.env.go.jp/en